Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential.
نویسندگان
چکیده
The fate of fuel releases largely depends on the poorly-understood response in microbial community structure and function. Here, we evaluate the impacts to the microbial community resulting from a pilot-scale continuous release (10 months) of a 10% v:v ethanol solution mixed with benzene and toluene (50 mg/L each). Microbial population shifts were characterized by pyrosequencing-based 16S rRNA analysis and by quantitative PCR targeting Bacteria, Archaea, and functional genes for methanogenesis (mcrA), acetogenesis (fhs) and aerobic degradation of aromatic hydrocarbons (PHE), which could occur in hypoxic micro-environments. The release stimulated microbial growth, increased species richness and diversity, and selected for genotypes involved in fermentative degradation (the relative abundance of mcrA and fhs increased 18- and 6-fold, respectively). The growth of putative hydrocarbon degraders and commensal anaerobes, and increases in microbial diversity and in degradation rates suggest an adaptive response that increases the potential for natural attenuation of ethanol blend releases.
منابع مشابه
Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.
The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a sur...
متن کاملAdaptation of aquatic microbial communities to quaternary ammonium compounds.
The effects of long-chain (C(12) to C(18)) quaternary ammonium compounds (QACs) on the density, heterotrophic activity, and biodegradation capabilities of heterotrophic bacteria were examined in situ in a lake ecosystem. Monoalkyl and dialkyl substituted QACs were tested over a range of concentrations (0.001 to 10 mg/liter) in both acute (3 h) and chronic (21 day) exposures. In general, none of...
متن کاملMicrobial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank.
The microbial community response to a neat ethanol release (E100, 76 l) onto residual hydrocarbons in sandy soil was evaluated in a continuous-flow 8 m(3) pilot-scale aquifer tank, simulating a release at a bulk fuel terminal. Microbial genotypic shifts were assessed using quantitative real-time PCR analysis. High ethanol concentrations in the capillary fringe at potentially toxic levels, excee...
متن کاملModeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions
Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...
متن کاملBiodegradation of crude oil by immobilized microbial cells in alginate beads produced by electrospraying technique
Background and Objective: Petroleum compounds are major contributors to aquatic environmental pollution. In recent years, biological treatments as environmental-friendly and cost-effective techniques have been used alongside the various physico-chemical methods. Microbial cell immobilization in hydrogel carriers has been the focus of researchers due to various advantages such as ease of microbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental pollution
دوره 178 شماره
صفحات -
تاریخ انتشار 2013